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1. INTRODUCTION

Thin panels are used in aircrafts, launch vehicles, etc. as structural members. These panels
are supported on all sides at the edges. As the region where the panel is supported is
additionally stiffened, it can be assumed that the boundary conditions at the edges are
closer to that of a clamped condition. In the present paper the free vibration behavior of
clamped panels are studied for different curvatures to identify the frequency cross overs
and mode shape changes through the associated strain energies (i.e., membrane, bending
and shear).

Finite element, analytical and experimental methods are extensively used for the
free vibration analysis of plate and shell problems. Bogner et al. [1] formulated a 48-
degrees-of-freedom shell element having continuity of the first derivatives along
the different elements sharing the same boundary. Olson and Lindberg [2] developed
a 28-degrees-of-freedom shell element which gave frequencies for a cantilever curved panel
even with a 4� 4 mesh within 10% of the experimentally obtained values for the first 12
modes. Leissa [3] carried out extensive compilation of data available on the free vibration
of shells. Free vibration characteristics of singly curved rectangular plates were obtained
by extended Rayleigh Ritz (ERR), finite element and Kantorovich methods by Petyt [4],
where non-dimensional frequency parameters with aspect ratio, thickness and curvature
were studied. For simply supported conditions, exact solutions were obtained in this study.
For studying clamped edges, various approximate methods were used and results obtained
were compared with the experimental data and the EER method is recommended. Cheung
and Cheung [5] studied the free vibration of cylindrical panels by integral equation
technique for the effects of variation of radius, thickness and the Poisson ratio. Blevins [6]
found out the frequency characteristics of shallow cylindrical curved panels. Srinivasan
and Bobby [7] studied the vibrations of a circular cylindrical panel using the integral
equation technique by varying the curvature and thickness for all the edges, clamped
condition. Lee et al. [8] studied the free vibration of cantilver shells of rectangular plan
form using the shallow and deep shell theories by the Ritz method for a wide range of shell
parameters.
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Generally, it is observed that when the radius reduces for a given size of the panel the
frequency crossovers and the corresponding mode shape changes do exist. The present
study attempts to explain this phenomena through the associated membrane, bending and
shear strain energies using a finite element formulation.

2. FINITE ELEMENT FORMULATION

The four noded 28-degrees-of-freedom (each node having 7 degree of freedom, namely,
w;wx;wy; u; uy; v and vy; where, subscript denotes partial derivative with respect to that
variable) cylindrical shell element of rectangular planform, developed using the
displacement approach by Olson and Lindberg [2], has been used in the present study.
The element co-ordinate system is shown in Figure 1.

The displacement polynomials used in the finite element formulation are

wðx; yÞ ¼ a1 þ a2x þ a3y þ a4xy þ a5x2 þ a6y2 þ a7x
2y þ a8xy2 þ a9x

3

þ a10y3 þ a11x3y þ a12xy3; ð1Þ

uðx; yÞ ¼ a13 þ a14x þ a15y þ a16xy þ a17y2 þ a18xy2 þ a19y3 þ a20xy3; ð2Þ

vðx; yÞ ¼ a21 þ a22x þ a23y þ a24xy þ a25y2 þ a26xy2 þ a27y3 þ a28xy3: ð3Þ

The strain–displacement relations for the cylindrical panel are
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Figure 1. Co-ordinate system of the cylindrical shell element.



LETTERS TO THE EDITOR726
The strain energy U of the element is given by

U ¼ 1

2
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1� u
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e2xy

� �

þD k2xx þ k2yy þ 2ukxxkyy þ
1� u
2

k2xy

� �
8>>><
>>>:

9>>>=
>>>;

dx dy; ð5Þ

where

C ¼ Et

ð1� u2Þ and D ¼ Et3

12ð1� u2Þ: ð6Þ

The expression for the kinetic energy T of the element is

T ¼ 1

2
rt

Z Z
’uu2 þ ’vv2 þ ’ww2

� �
dx dy: ð7Þ

Using the above expressions the elemental stiffness matrix [k], further subdivided as
[km], [kb] and [ks] as explained below and the elemental mass matrix [m] are generated.

Using the following expressions extracted from equation (5), sub-stiffness matrices [km],
[kb] and [ks] for membrane, bending and shear stiffnesses, respectively, are computed from

Um ¼ 1

2

Z Z
C e2xx þ e2yy þ 2uexxeyy

 �
dx dy; ð8Þ

Ub ¼ 1

2

Z Z
D k2xx þ k2yy þ 2ukxxkyy

 �
dx dy; ð9Þ

Us ¼
1

2

1� u
2

Z Z
ðCe2xy þ Dk2xyÞ dx dy: ð10Þ

After assembling the elemental matrices, the matrix eigenvalue problem governing the
vibration of the panel can be written as

½Km� þ ½Kb� þ ½Ks�½ � df g � o2 M½ � df g ¼ 0f g: ð11Þ

Equation (14) can be solved for the eigenfrequencies and the eigenvectors by using any
standard algorithm to extract the eigenvalues and the eigenvectors. To evaluate the strain
energy break up namely membrane, bending and shear for each mode the following
expressions are used:

1
2
½d�T½Km�½d� ¼ diagonal ½SEm�; ð12Þ

1
2
½d�T½Kb�½d� ¼ diagonal ½SEb�; ð13Þ

1
2
½d�T½Ks�½d� ¼ diagonal ½SEs�; ð14Þ

where, the ‘i’th diagonal term represents the energies for the ‘i’th mode.
From Equations (12) to (14) the energy break up for each mode for the membrane,

bending and shear energies of a vibrating panel can be evaluated, as percentage of the total
strain energy [SET] given by

½SET �12 df gT K½ � df g; ð15Þ

where

K½ � ¼ ½Km� þ ½Kb� þ ½Ks�½ �: ð16Þ
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3. NUMERICAL RESULTS AND DISCUSSIONS

The first five frequencies and percentages of the membrane, bending and shear strain
energies of a 500mm� 500mm� 2mm thick panel made of steel (E=21,000Kg/mm2 ,
r=7�8E�10 kg s2m�3 and n=0�3) are obtained for different curvatures. A 20� 20 finite
element mesh for the present problem has been found to give converged results within 1%
accuracy [9]. Panels with different R/t values ranging from 10 000 to 500 have been
considered in the present study. Figure 2 gives the variation of the frequencies for the first
five modes, with varying R/t. Figures 3–7 give the energy variation of membrane, bending
and shear energies as percentages of the total strain energy in the panel for different R/t
values for the first five modes. The corresponding mode shapes in terms of ‘m’ and ‘n’ are
given for the some representative values of R/t in Table 1.

It is seen that as R/t increases, the panel behaves similar to that of a plate, which
it should be, and the panel frequencies are high for low R/t values because of the curvature
effect. For mode 1 (Figure 3), the mode change is seen at R/t of around 700 and
around 2400 and the corresponding energy percentage changes can be seen in the plots,
as the membrane, bending and shear energy. Mode shape changes from (1,2) to (1,3)
for R/t of around 700 and (1,1) to (1,2) for R/t of around 2400. It can be seen that when
R/t decreases the bending energy reduces and the membrane energy increases. The
mode shape change is due to the change in the energy level at R/t of around 2400.
Similar mode shape change and the associated energy changes can be seen at R/t of around
700 also.
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Figure 2. Frequencies of a square clamped panel.
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Figure 3. Various energies for mode 1 for square clamped panel.
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Figure 4. Various energies for mode 2 for square clamped panel.
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Figure 5. Various energies for mode 3 for square clamped panel.
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Figure 6. Various energies for mode 6 for square clamped panel.
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Figure 7. Various energies for mode 7 for square clamped panel.

Table 1

Mode shapes (m, n) for different R/t

R/t 500 750 1000 2000 3000 4000 10 000

Mode 1 1,3 1,2 1,2 1,2 1,1 1,1 1,1
Mode 2 1,4 1,3 1,3 1,3 2,1 2,1 2,1
Mode 3 2,3 2,3 2,2 1,2 1,2 1,2 1,2
Mode 4 2,4 2,4 2,3 2,2 2,2 2,2 2,2
Mode 5 1,4 1,4 1,3 1,3 1,3 1,3 1,3
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For mode 2 (Figure 4), the mode shape changes at the same R/t as that of mode 1.
The difference seems to be that while bending and shear energy changes dictate the
mode shape change at R/t of around 2400, it is the bending and shear energy combina-
tion, which causes mode shape change at R/t of around 700. The corresponding
mode changes are (1,3) to (1,4) for R/t of around 700 and (2,1) to (1,3) for R/t of
around 2400.

Modes 3 (Figure 5) and 4 (Figure 6) have mode shape changes at R/t of around 900 and
around 1500. While for modes 3 and 4 all the energy levels dictate the mode shape change
for R/t of around 1500, it is the membrane and bending energy that is causing the mode
shape change at R/t of around 900. The mode shape changes are (2,3) to (2,4) for R/t of
around 900 and (2,2) to (2,3) for R/t of around 1500.
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Mode shape change for the fifth mode (Figure 7) is found to occur at R/t of around 900
where there is a sudden change in the membrane and bending energies and the mode shape
change is from (1,3) to (1,4).

4. CONCLUSIONS

The frequencies and associated mode shapes of circular panels clamped on all sides are
studied by the finite element method. The mode wise strain energies, namely, the
membrane, bending and shear energies are computed as percentages of the total strain
energy. First five frequencies, mode shapes and the corresponding strain energies are
computed for different curvatures. Based on the energy changes, it is possible to explain
the frequency cross overs and the mode shape changes of the vibrating panel.
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APPENDIX A: NOMENCLATURE

a,b length and width of the panel
E Young’s modulus.
t panel thickness
[k] elemental stiffness matrix
[km], [kb], [ks] elemental membrane, bending and shear stiffness matrices

respectively.
[K] global stiffness matrix
[Km], [Kb], [Ks] global membrane, bending and shear stiffness matrices

respectively.
m,n longitudinal and circumferential wave number
[m] elemental mass matrix

[M] global mass matrix
R radius of the panel
[SEm], [SEb], [SEs] membrane, bending and shear strain energies
T kinetic energy
u,v,w displacements in panel co-ordinates
U total strain energy
Um,Ub,Us membrane, bending and shear strain energies
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x,y panel co-ordinates (x-along the longitudinal and y-along the
circumferential directions)

exx, eyy, exy strains
kxx, kyy, kxy curvatures
n the Poisson ratio
r mass density
(*) derivative with respect to time
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